Keywords: Reinforcement Learning, Domain Randomization, Sim-To-Real
Abstract: Reinforcement-learning agents often struggle when deployed from simulation to the real-world. A dominant strategy for reducing the sim-to-real gap is domain randomization (DR) which trains the policy across many simulators produced by sampling dynamics parameters, but standard DR ignores offline data already available from the real system. We study offline domain randomization (ODR), which first fits a distribution over simulator parameters to an offline dataset. While a growing body of empirical work reports substantial gains with algorithms such as DROPO, the theoretical foundations of ODR remain largely unexplored. In this work, we cast ODR as a maximum-likelihood estimation over a parametric simulator family and provide statistical guarantees: under mild regularity and identifiability conditions, the estimator is weakly consistent (it converges in probability to the true dynamics as data grows), and it becomes strongly consistent (i.e., it converges almost surely to the true dynamics) when an additional uniform Lipschitz continuity assumption holds. We examine the practicality of these assumptions and outline relaxations that justify ODR’s applicability across a broader range of settings. Taken together, our results place ODR on a principled footing and clarify when offline data can soundly guide the choice of a randomization distribution for downstream offline RL.
Primary Area: reinforcement learning
Submission Number: 19748
Loading