Keywords: Graph Anomaly Detection, Adaptive Graph Neural Networks, Frequency, One-class classification
TL;DR: we propose RHO, namely Robust Homophily Learning, to adaptively learn such homophily patterns. RHO consists of two novel modules, adaptive frequency response filters (AdaFreq) and graph normality alignment (GNA).
Abstract: Current semi-supervised graph anomaly detection (GAD) methods utilizes a small set of labeled normal nodes to identify abnormal nodes from a large set of unlabeled nodes in a graph. These methods posit that 1) normal nodes share a similar level of homophily and 2) the labeled normal nodes can well represent the homophily patterns in the entire normal class. However, this assumption often does not hold well since normal nodes in a graph can exhibit diverse homophily in real-world GAD datasets. In this paper, we propose RHO, namely Robust Homophily Learning, to adaptively learn such homophily patterns. RHO consists of two novel modules, adaptive frequency response filters (AdaFreq) and graph normality alignment (GNA). AdaFreq learns a set of adaptive spectral filters that capture different frequency components of the labeled normal nodes with varying homophily in the channel-wise and cross-channel views of node attributes. GNA is introduced to enforce consistency between the channel-wise and cross-channel homophily representations to robustify the normality learned by the filters in the two views. Experiments on eight real-world GAD datasets show that RHO can effectively learn varying, often under-represented, homophily in the small labeled node set and substantially outperforms state-of-the-art competing methods. Code is available at \url{https://github.com/mala-lab/RHO}.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 15822
Loading