A Watermark for Low-entropy and Unbiased Generation in Large Language Models

22 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Watermark, large language model
Abstract: Recent advancements in large language models (LLMs) have highlighted the risk of misusing them, raising the need for accurate detection of LLM-generated content. In response, a viable solution is to inject imperceptible identifiers into LLMs, known as watermarks. Previous work demonstrates that unbiased watermarks ensure unforgeability and preserve text quality by maintaining the expectation of the LLM output probability distribution. However, previous unbiased watermarking methods suffer from one or more of the following issues: (1) requiring access to white-box LLMs during detection, (2) incurring long detection time, (3) being not robust against simple watermarking attacks, (4) failing to provide statistical guarantees for the type II error of watermark detection, and (5) being not statistically unbiased for low-entropy scenarios, which hinder their deployment in practice. This study proposes the Sampling One Then Accepting (STA-1) method, a watermark that can address all of these issues. Moreover, we discuss the tradeoff between watermark strength and text quality for unbiased watermarks. We show that in low-entropy scenarios, unbiased watermarks face a tradeoff between watermark strength and the risk of unsatisfactory outputs. Experimental results on both low-entropy and high-entropy datasets demonstrate that STA-1 achieves text quality and watermark strength comparable to existing unbiased watermarks, with a low risk of unsatisfactory outputs. Implementation codes for this study are available online (hidden for peer review).
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2474
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview