Explainable Graph Representation Learning via Graph Pattern Analysis

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: graph representation learning, explainable graph learning
TL;DR: We introduce a framework for learning and explaining graph representations through graph pattern analysis.
Abstract: Explainable artificial intelligence (XAI) is an important area in the AI community, and interpretability is crucial for building robust and trustworthy AI models. While previous work has explored model-level and instance-level explainable graph learning, there has been limited investigation into explainable graph representation learning. In this paper, we focus on representation-level explainable graph learning and ask a fundamental question: What specific information about a graph is captured in graph representations? Our approach is inspired by graph kernels, which evaluate graph similarities by counting substructures within specific graph patterns. Although the pattern counting vector can serve as an explainable representation, it has limitations such as ignoring node features and being high-dimensional. To address these limitations, we introduce a framework for learning and explaining graph representations through graph pattern analysis. We start by sampling graph substructures of various patterns. Then, we learn the representations of these patterns and combine them using a weighted sum, where the weights indicate the importance of each graph pattern's contribution. We also provide theoretical analyses of our methods, including robustness and generalization. In our experiments, we show how to learn and explain graph representations for real-world data using pattern analysis. Additionally, we compare our method against multiple baselines in both supervised and unsupervised learning tasks to demonstrate its effectiveness.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4579
Loading