Keywords: Mixture-of-Expert, LLM, Quantization, Pruning
TL;DR: A Mixture compression method, which achieves extreme compression for MoE-LLMs with less accuracy loss, ensuring a better trade-off between performance and efficiency.
Abstract: Mixture-of-Experts large language models (MoE-LLMs) marks a significant step forward of language models, however, they encounter two critical challenges in practice: 1) expert parameters lead to considerable memory consumption and loading latency; and 2) the current activated experts are redundant, as many tokens may only require a single expert. Motivated by these issues, we investigate the MoE-LLMs and make two key observations: a) different experts exhibit varying behaviors on activation reconstruction error, routing scores, and activated frequencies, highlighting their differing importance, and b) not all tokens are equally important-- only a small subset is critical. Building on these insights, we propose MC, a training-free Mixture-Compressor for MoE-LLMs, which leverages the significance of both experts and tokens to achieve an extreme compression. First, to mitigate storage and loading overheads, we introduce Pre-Loading Mixed-Precision Quantization (PMQ), which formulates the adaptive bit-width allocation as a Linear Programming (LP) problem, where the objective function balances multi-factors reflecting the importance of each expert. Additionally, we develop Online Dynamic Pruning (ODP), which identifies important tokens to retain and dynamically select activated experts for other tokens during inference to optimize efficiency while maintaining performance. Our MC integrates static quantization and dynamic pruning to collaboratively achieve extreme compression for MoE-LLMs with less accuracy loss, ensuring an optimal trade-off between performance and efficiency Extensive experiments confirm the effectiveness of our approach. For instance, at 2.54 bits, MC compresses 76.6% of the model, with only a 3.8% average accuracy loss. During dynamic inference, we further reduce activated parameters by 15%, with a performance drop of less than 0.6%. Remarkably, MC even surpasses floating-point 13b dense LLMs with significantly smaller parameter sizes, suggesting that mixture compression in MoE-LLMs has the potential to outperform both comparable and larger dense LLMs. Our code is
available at https://github.com/Aaronhuang-778/MC-MoE
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1819
Loading