NeuralMatrix: Compute the Entire Neural Networks with Linear Matrix Operations for Efficient Inference

20 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: infrastructure, software libraries, hardware, etc.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Neural Network, Linear Matrix Operation, Efficient Inference
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The inherent diversity of computation types within individual deep neural network (DNN) models necessitates a corresponding variety of computation units within hardware processors, leading to a significant constraint on computation efficiency during neural network execution. In this study, we introduce NeuralMatrix, a framework that transforms the computation of entire DNNs into linear matrix operations, effectively enabling their execution with one general-purpose matrix multiplication (GEMM) accelerator. By surmounting the constraints posed by the diverse computation types required by individual network models, this approach provides both generality, allowing a wide range of DNN models to be executed using a single GEMM accelerator and application-specific acceleration levels without extra special function units, which are validated through main stream DNNs and their variant models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2170
Loading