Learning Towards The Largest MarginsDownload PDF

29 Sept 2021, 00:35 (edited 10 May 2022)ICLR 2022 PosterReaders: Everyone
  • Keywords: loss function design, margin-based loss, classification
  • Abstract: One of the main challenges for feature representation in deep learning-based classification is the design of appropriate loss functions that exhibit strong discriminative power. The classical softmax loss does not explicitly encourage discriminative learning of features. A popular direction of research is to incorporate margins in well-established losses in order to enforce extra intra-class compactness and inter-class separability, which, however, were developed through heuristic means, as opposed to rigorous mathematical principles. In this work, we attempt to address this limitation by formulating the principled optimization objective as learning towards the largest margins. Specifically, we firstly propose to employ the class margin as the measure of inter-class separability, and the sample margin as the measure of intra-class compactness. Accordingly, to encourage discriminative representation of features, the loss function should promote the largest possible margins for both classes and samples. Furthermore, we derive a generalized margin softmax loss to draw general conclusions for the existing margin-based losses. Not only does this principled framework offer new perspectives to understand and interpret existing margin-based losses, but it also provides new insights that can guide the design of new tools, including \textit{sample margin regularization} and \textit{largest margin softmax loss} for class balanced cases, and \textit{zero centroid regularization} for class imbalanced cases. Experimental results demonstrate the effectiveness of our strategy for multiple tasks including visual classification, imbalanced classification, person re-identification, and face verification.
  • Supplementary Material: zip
12 Replies