BioMassters: A Benchmark Dataset for Forest Biomass Estimation using Multi-modal Satellite Time-series
Keywords: Multi-Temporal, Multi-Modal, Satellite imagery, Biomass
TL;DR: A new benchmark dataset for large scale above ground biomass estimation using satellite multi-spectral and radar time series
Abstract: Above Ground Biomass is an important variable as forests play a crucial role in mitigating climate change as they act as an efficient, natural and cost-effective carbon sink. Traditional field and airborne LiDAR measurements have been proven to provide reliable estimations of forest biomass. Nevertheless, the use of these techniques at a large scale can be challenging and expensive. Satellite data have been widely used as a valuable tool in estimating biomass on a global scale. However, the full potential of dense multi-modal satellite time series data, in combination with modern deep learning approaches, has yet to be fully explored. The aim of the "BioMassters" data challenge and benchmark dataset is to investigate the potential of multi-modal satellite data (Sentinel-1 SAR and Sentinel-2 MSI) to estimate forest biomass at a large scale using the Finnish Forest Centre's open forest and nature airborne LiDAR data as a reference.
The performance of the top three baseline models shows the potential of deep learning to produce accurate and higher-resolution biomass maps. Our benchmark dataset is publically available at https://huggingface.co/datasets/nascetti-a/BioMassters (doi:10.57967/hf/1009) and the implementation of the top three winning models are available at https://github.com/drivendataorg/the-biomassters.
Supplementary Material: zip
Submission Number: 997
Loading