ProofOptimizer: Training Language Models to Simplify Proofs without Human Demonstrations

ICLR 2026 Conference Submission21584 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: ai for math, proof simplification
TL;DR: we train a model to simplify AI-generated Lean proofs
Abstract: Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-medalist capabilities and producing formal proofs that span thousands of lines. Although such proofs are mechanically verified by formal systems like Lean, their excessive length renders them difficult for humans to comprehend and limits their usefulness for mathematical insight. Proof simplification is therefore a critical bottleneck. Yet, training data for this task is scarce, and existing methods—mainly agentic scaffolding with off-the-shelf LLMs—struggle with the extremely long proofs generated by RL-trained provers. We introduce ProofOptimizer, the first language model trained to simplify Lean proofs without requiring additional human supervision. ProofOptimizer is trained via expert iteration and reinforcement learning, using Lean to verify simplifications and provide training signal. At inference time, it operates within an iterative proof-shortening workflow, progressively reducing proof length. Experiments show that ProofOptimizer substantially compresses proofs generated by state-of-the-art RL-trained provers on standard benchmarks, reducing proof length by 87% on miniF2F, 57% on PutnamBench, and 50% on Seed-Prover's IMO 2025 proofs. Beyond conciseness, the simplified proofs check faster in Lean and further improve downstream prover performance when reused as training data for supervised finetuning.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Submission Number: 21584
Loading