Relational Constraints On Neural Networks Reproduce Human Biases towards Abstract Geometric Regularity

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: human cognition, geometry, abstraction, vision, cognitive science, relational, human intelligence
TL;DR: We show how neural networks, without explicit symbolic machinery, can be trained to exhibit human-like behavior in visual processing of abstract geometric stimuli.
Abstract: Uniquely among primates, humans possess a remarkable capacity to recognize and manipulate abstract structure in the service of task goals across a broad range of behaviors. One illustration of this is in the visual perception of geometric forms. Studies have shown a uniquely human bias toward geometric regularity, with task performance enhanced for more regular and symmetric forms compared to their geometrically irregular counterparts. Such studies conclude that this behavior implies the existence of discrete symbolic structure in human mental representations, and that replicating such behavior in neural network architectures will require mechanisms for symbolic processing. In this study, we argue that human biases towards geometric regularity can be reproduced in neural networks, without explicitly providing them with symbolic machinery, by augmenting them with an architectural constraint that enables the system to discover and manipulate relational structure. When trained with the appropriate curriculum, this model exhibits human-like biases towards symmetry and regularity in two distinct tasks involving abstract geometric reasoning. Our findings indicate that neural networks, when equipped with the necessary training objectives and architectural elements, can exhibit human-like regularity biases and generalization. This approach provides insights into the neural mechanisms underlying geometric reasoning and offers an alternative to prevailing symbolic ``Language of Thought'' models in this domain.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8336
Loading