VAST: Value Function Factorization with Variable Agent Sub-TeamsDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Multi-Agent Learning, Reinforcement Learning, Value Function Factorization
TL;DR: We propose a hierarchical value function factorization approach based on variable agent sub-teams.
Abstract: Value function factorization (VFF) is a popular approach to cooperative multi-agent reinforcement learning in order to learn local value functions from global rewards. However, state-of-the-art VFF is limited to a handful of agents in most domains. We hypothesize that this is due to the flat factorization scheme, where the VFF operator becomes a performance bottleneck with an increasing number of agents. Therefore, we propose VFF with variable agent sub-teams (VAST). VAST approximates a factorization for sub-teams which can be defined in an arbitrary way and vary over time, e.g., to adapt to different situations. The sub-team values are then linearly decomposed for all sub-team members. Thus, VAST can learn on a more focused and compact input representation of the original VFF operator. We evaluate VAST in three multi-agent domains and show that VAST can significantly outperform state-of-the-art VFF, when the number of agents is sufficiently large.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: https://github.com/thomyphan/scalable-marl
9 Replies

Loading