Minimax Optimal Reinforcement Learning with Quasi-Optimism

Published: 22 Jan 2025, Last Modified: 09 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement Learning, Tabular Reinforcement Learning, Regret Analysis
TL;DR: We propose a simple and practical algorithm with the tightest minimax regret bound for tabular reinforcement learning.
Abstract: In our quest for a reinforcement learning (RL) algorithm that is both practical and provably optimal, we introduce EQO (Exploration via Quasi-Optimism). Unlike existing minimax optimal approaches, EQO avoids reliance on empirical variances and employs a simple bonus term proportional to the inverse of the state-action visit count. Central to EQO is the concept of *quasi-optimism*, where estimated values need not be fully optimistic, allowing for a simpler yet effective exploration strategy. The algorithm achieves the sharpest known regret bound for tabular RL under the mildest assumptions, proving that fast convergence can be attained with a practical and computationally efficient approach. Empirical evaluations demonstrate that EQO consistently outperforms existing algorithms in both regret performance and computational efficiency, providing the best of both theoretical soundness and practical effectiveness.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1797
Loading