Negatively Correlated Ensemble Reinforcement Learning for Online Diverse Game Level Generation

Published: 16 Jan 2024, Last Modified: 20 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Level Generation, Video Games, Deep Reinforcement Learning, Ensemble Learning, Regularisation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This paper proposes a regularised ensemble reinforcement learning approach with policy regularisation theorems to train generators that generates diverse and promising game levels in real-time.
Abstract: Deep reinforcement learning has recently been successfully applied to online procedural content generation in which a policy determines promising game-level segments. However, existing methods can hardly discover diverse level patterns, while the lack of diversity makes the gameplay boring. This paper proposes an ensemble reinforcement learning approach that uses multiple negatively correlated sub-policies to generate different alternative level segments, and stochastically selects one of them following a selector model. A novel policy regularisation technique is integrated into the approach to diversify the generated alternatives. In addition, we develop theorems to provide general methodologies for optimising policy regularisation in a Markov decision process. The proposed approach is compared with several state-of-the-art policy ensemble methods and classic methods on a well-known level generation benchmark, with two different reward functions expressing game-design goals from different perspectives. Results show that our approach boosts level diversity notably with competitive performance in terms of the reward. Furthermore, by varying the regularisation coefficient, the trained generators form a well-spread Pareto front, allowing explicit trade-offs between diversity and rewards of generated levels.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: reinforcement learning
Submission Number: 6772
Loading