Meta-UCF: Unified Task-Conditioned LoRA Generation for Continual Learning in Large Language Models

Published: 26 Jan 2026, Last Modified: 11 Feb 2026ICLR 2026 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, Fine-Tuning, Continual fine-tuning
Abstract: Large language models are increasingly deployed in settings where newtasks arrive continuously, yet existing parameter-efficient finetuning (PEFT) methods either bloat linearly with the task horizon or sacrifice deep adaptation, leaving catastrophic forgetting unresolved. We aim to achieve memory-constant, on-the-fly adaptation for a frozen LLM facing an unbounded stream of tasks. To this end we propose Meta-Unified Contrastive Finetuning(Meta-UCF), which encodes each task into a lightweight layer-normalised mean embedding and feeds it to a single hypernetwork that instantly generates rank-r LoRA updates for every transformer layer; a meta-contrastive coupled with orthogonality objective further steers task embeddings into near-orthogonal directions, preserving past knowledge without inner-loop gradients. On four benchmark streams—Std-CL 5, Seq-GLUE 7, Long-CL 15 and TRACE-8—Meta-UCF raises average accuracy by up to 2.2 pp and cuts forgetting by 13% relative to the strongest LoRA baseline, while using the parameters of a single adapter. By decoupling continual learning from parameter growth, Meta-UCF provides a practical path toward scalable, low-resource lifelong language modelling.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 5455
Loading