MP-GFormer: A 3D-Geometry-Aware Dynamic Graph Transformer Approach for Machining Process Planning

ICLR 2026 Conference Submission22581 Authors

20 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Dynamic graph learning, graph transformer, machining process planning
Abstract: Machining process planning (MP) is inherently complex due to structural and geometrical dependencies among part features and machining operations. A key challenge lies in capturing dynamic interdependencies that evolve with distinct part geometries as operations are performed. Machine learning has been applied to address challenges in MP, such as operation selection and machining sequence prediction. Dynamic graph learning (DGL) has been widely used to model dynamic systems, thanks to its ability to integrate spatio-temporal relationships. However, in MP, while existing DGL approaches can capture these dependencies, they fail to incorporate three-dimensional (3D) geometric information of parts and thus lack domain awareness in predicting machining operation sequences. To address this limitation, we propose MP-GFormer, a 3D-geometry-aware dynamic graph transformer that integrates evolving 3D geometric representations into DGL through an attention mechanism to predict machining operation sequences. Our approach leverages StereoLithography surface meshes representing the 3D geometry of a part after each machining operation, with the boundary representation method used for the initial 3D designs. We evaluate MP-GFormer on a synthesized dataset and demonstrate that the method achieves improvements of 24\% and 36\% in accuracy for main and sub-operation predictions, respectively, compared to state-of-the-art approaches.
Primary Area: applications to robotics, autonomy, planning
Submission Number: 22581
Loading