Gradual Domain Adaptation via Gradient Flow

Published: 16 Jan 2024, Last Modified: 07 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Domain adaptation, gradual domain adaptation, gradient flow
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: A domain adaptation method that dynamically generates intermediate domains and gradually updates the classifier.
Abstract: Domain shift degrades classification models on new data distributions. Conventional unsupervised domain adaptation (UDA) aims to learn features that bridge labeled source and unlabeled target domains. In contrast to feature learning, gradual domain adaptation (GDA) leverages extra continuous intermediate domains with pseudo-labels to boost the source classifier. However, real intermediate domains are sometimes unavailable or ineffective. In this paper, we propose $\textbf{G}$radual Domain Adaptation via $\textbf{G}$radient $\textbf{F}$low (GGF) to generate intermediate domains with preserving labels, thereby enabling us a fine-tuning method for GDA. We employ the Wasserstein gradient flow in Kullback–Leibler divergence to transport samples from the source to the target domain. To simulate the dynamics, we utilize the Langevin algorithm. Since the Langevin algorithm disregards label information and introduces diffusion noise, we introduce classifier-based and sample-based potentials to avoid label switching and dramatic deviations in the sampling process. For the proposed GGF model, we analyze its generalization bound. Experiments on several benchmark datasets demonstrate the superiority of the proposed GGF method compared to state-of-the-art baselines.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 5543