Few-Shot Anomaly Detection on Industrial Images through Contrastive Fine-TuningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Anomaly Detection, Transfer Learning, Few-Shot Learning
Abstract: Detecting abnormal products through imagery data is essential to the quality control in manufacturing. Existing approaches towards anomaly detection~(AD) often rely on substantial amount of anomaly-free samples to train representation and density models. Nevertheless, large anomaly-free datasets may not always be available before inference stage and this requires building an anomaly detection framework with only a handful of normal samples, a.k.a. few-shot anomaly detection (FSAD). We propose two techniques to address the challenges in FSAD. First, we employ a model pretrained on large source dataset to initialize model weights. To ameliorate the covariate shift between source and target domains, we adopt contrastive training on the few-shot target domain data. Second, to encourage learning representations suitable for downstream AD, we further incorporate cross-instance pairs to increase tightness within normal sample cluster and better separation between normal and synthesized negative samples. Extensive evaluations on six few-shot anomaly detection benchmarks demonstrate the effectiveness of the proposed method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
TL;DR: We proposed a few-shot anomaly detection approach towards industrial defect identification
17 Replies

Loading