Verifiably Forgotten? Gradient Differences Still Enable Data Reconstruction in Federated Unlearning

ICLR 2026 Conference Submission15078 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Inversion attack, Reconstruction attack, federated unlearning, privacy leakage
Abstract: Federated Unlearning (FU) has emerged as a critical compliance mechanism for data privacy regulations, requiring unlearned clients to provide verifiable Proof of Federated Unlearning (PoFU) to auditors upon data removal requests. However, we uncover a significant privacy vulnerability: when gradient differences are served as PoFU, $\textit{honest-but-curious}$ auditors may exploit mathematical correlations between gradient differences and forgotten samples to reconstruct the latter. Such reconstruction, if feasible, would face three key challenges: (i) restricted auditor access to client-side data, (ii) limited samples derivable from individual PoFU, and (iii) high-dimensional redundancy in gradient differences. To overcome these challenges, we propose $\textbf{I}$nverting $\textbf{G}$radient difference to $\textbf{F}$orgotten data (IGF), a novel learning-based reconstruction attack framework that employs Singular Value Decomposition (SVD) for dimensionality reduction and feature extraction. IGF incorporates a tailored pixel-level inversion model optimized via a composite loss that captures both structural and semantic cues. This enables efficient and high-fidelity reconstruction of large-scale samples, surpassing existing methods. To counter this novel attack, we design an orthogonal obfuscation defense that preserves PoFU verification utility while preventing sensitive forgotten data reconstruction. Experiments across multiple datasets validate the effectiveness of the attack and the robustness of the defense. The code is available at https://anonymous.4open.science/r/IGF.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 15078
Loading