Attribution-Guided Decoding

ICLR 2026 Conference Submission13194 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: decoding, steering, feature attribution, mechanistic interpretability, explainable AI, instruction following, factuality, language model, generation
TL;DR: An interpretability-based decoding method that makes LLMs more reliable by selecting the next token that shows the highest dependence to a defined region of interest, such as an instruction for adherence or a knowledge source for factuality.
Abstract: The capacity of Large Language Models (LLMs) to follow complex instructions and generate factually accurate text is critical for their real-world application. However, standard decoding methods often fail to robustly satisfy these requirements, while existing control techniques frequently degrade general output quality. In this work, we introduce Attribution-Guided Decoding (AGD), an interpretability-based decoding strategy. Instead of directly manipulating model activations, AGD considers a set of high-probability output token candidates and selects the one that exhibits the highest attribution to a user-defined Region of Interest (ROI). This ROI can be flexibly defined over different parts of the model's input or internal components, allowing AGD to steer generation towards various desirable behaviors. We demonstrate AGD's efficacy across three challenging domains. For instruction following, we show that AGD significantly boosts adherence (e.g., improving the overall success rate on Llama 3.1 from 66.0\% to 79.1\%). For knowledge-intensive tasks, we show that guiding generation towards usage of internal knowledge components or contextual sources can reduce hallucinations and improve factual accuracy in both closed-book and open-book settings. Furthermore, we propose an adaptive, entropy-based variant of AGD that mitigates quality degradation and reduces computational overhead by applying guidance only when the model is uncertain. Our work presents a versatile, more interpretable, and effective method for enhancing the reliability of modern LLMs.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Submission Number: 13194
Loading