SafeDiffuser: Safe Planning with Diffusion Probabilistic Models

ICLR 2025 Conference Submission13531 Authors

28 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion model, Safety guarantees, Planning and control
TL;DR: We propose a new method to ensure diffusion probabilistic models satisfy specifications by using a control theoretic method
Abstract: Diffusion models have shown promise in data-driven planning. While these planners are commonly employed in applications where decisions are critical, they still lack established safety guarantees. In this paper, we address this limitation by introducing SafeDiffuser, a method to equip diffusion models with safety guarantees via control barrier functions. The key idea of our approach is to embed finite-time diffusion invariance, i.e., a form of specification consisting of safety constraints, into the denoising diffusion procedure. This way we enable data generation under safety constraints. We show that SafeDiffusers maintain the generative performance of diffusion models while also providing robustness in safe data generation. We evaluate our method on a series of tasks, including maze path generation, legged robot locomotion, and 3D space manipulation, and demonstrate the advantages of robustness over vanilla diffusion models.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13531
Loading