Keywords: LLM, Graph Learning
Abstract: Graphs provide a unified representation of semantic content and relational structure, making them a natural fit for domains such as molecular modeling, citation networks, and social graphs. Meanwhile, large language models (LLMs) have excelled at understanding natural language and integrating cross-modal signals, sparking interest in their potential for graph reasoning. Recent work has explored this by either designing template-based graph templates or using graph neural networks (GNNs) to encode structural information. In this study, we investigate how different strategies for encoding graph structure affect LLM performance on text-attributed graphs. Surprisingly, our systematic experiments reveal that: (i) LLMs leveraging only node textual descriptions already achieve strong performance across tasks; and (ii) most structural encoding strategies offer marginal or even negative gains. We show that explicit structural priors are often unnecessary and, in some cases, counterproductive when powerful language models are involved. This represents a significant departure from traditional graph learning paradigms and highlights the need to rethink how structure should be represented and utilized in the LLM era. **Our study is among the first to systematically challenge the foundational assumption that structure is inherently beneficial for LLM-based graph reasoning, opening the door to new, semantics-driven approaches for graph learning**.
Supplementary Materials: zip
Submission Type: Full paper proceedings track submission (max 9 main pages).
Submission Number: 7
Loading