AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents

ICLR 2025 Conference Submission10792 Authors

27 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Computer Control, Autonomous Agents, LLMs, Multimodal
TL;DR: An environment for benchmarking Android UI agents which provides durable rewards for different task parameterizations across 20 apps.
Abstract: Autonomous agents that execute human tasks by controlling computers can enhance human productivity and application accessibility. However, progress in this field will be driven by realistic and reproducible benchmarks. We present AndroidWorld, a fully functional Android environment that provides reward signals for 116 programmatic tasks across 20 real-world Android apps. Unlike existing interactive environments, which provide a static test set, AndroidWorld dynamically constructs tasks that are parameterized and expressed in natural language in unlimited ways, thus enabling testing on a much larger and more realistic suite of tasks. To ensure reproducibility, each task includes dedicated initialization, success-checking, and tear-down logic, which modifies and inspects the device’s system state. We experiment with baseline agents to test AndroidWorld and provide initial results on the benchmark. Our best agent can complete 30.6% of AndroidWorld's tasks, leaving ample room for future work. Furthermore, we adapt a popular desktop web agent to work on Android, which we find to be less effective on mobile, suggesting future research is needed to achieve universal, cross-platform agents. Finally, we also conduct a robustness analysis, showing that task variations can significantly affect agent performance, demonstrating that without such testing, agent performance metrics may not fully reflect practical challenges.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10792
Loading