Keywords: reinforcement learning, variational inference, risk sensitive RL
Abstract: Risk-sensitive reinforcement learning (RL) with an entropic risk measure typically requires knowledge of the transition kernel or performs unstable updates w.r.t. exponential Bellman equations. As a consequence, algorithms that optimize this objective have been restricted to tabular or low-dimensional continuous environments. In this work we leverage the connection between the entropic risk measure and the RL-as-inference framework to develop a risk-sensitive variational actor-critic algorithm (rsVAC). Our work extends the variational framework to incorporate stochastic rewards and proposes a variational model-based actor-critic approach that modulates policy risk via a risk parameter. We consider, both, the risk-seeking and risk-averse regimes and present rsVAC learning variants for each setting. Our experiments demonstrate that this approach produces risk-sensitive policies and yields improvements in both tabular and risk-aware variants of complex continuous control tasks in MuJoCo.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12719
Loading