ChatShop: Interactive Information Seeking with Language AgentsDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: The desire and ability to seek new information strategically are fundamental to human learning but often overlooked in current language agent development. Using a web shopping task as an example, we show that it can be reformulated and solved as a retrieval task without a requirement of interactive information seeking. We then redesign the task to introduce a new role of shopper, serving as a realistically constrained communication channel. The agents in our proposed ChatShop task explore user preferences in open-ended conversation to make informed decisions. Our experiments demonstrate that the proposed task can effectively evaluate the agent's ability to explore and gradually accumulate information through multi-turn interaction. We also show that LLM-simulated shoppers serve as a good proxy to real human shoppers and discover similar error patterns of agents.
Paper Type: short
Research Area: Resources and Evaluation
Contribution Types: NLP engineering experiment
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview