Dual Process Learning: Controlling Use of In-Context vs. In-Weights Strategies with Weight Forgetting

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Natural Language Processing, In-Context Learning, In-Weights Learning, Active Forgetting
TL;DR: We explore why in-context learning abilities on rare and unseen tokens disappears over training, and introduce a training intervention that fixes these failures.
Abstract: Language models have the ability to perform in-context learning (ICL), allowing them to flexibly adapt their behavior based on context. This contrasts with in-weights learning (IWL), where memorized information is encoded in model parameters after iterated observations of data. An ideal model should be able to flexibly deploy both of these abilities. Despite their apparent ability to learn in-context, language models are known to struggle when faced with unseen or rarely seen tokens (Land & Bartolo, 2024). Hence, we study $\textbf{structural in-context learning}$, which we define as the ability of a model to execute in-context learning on arbitrary novel tokens -- so called because the model must generalize on the basis of e.g. sentence structure or task structure, rather than content encoded in token embeddings. We study structural in-context algorithms on both synthetic and naturalistic tasks using toy models, masked language models, and autoregressive language models. We find that structural ICL appears before quickly disappearing early in LM pretraining. While it has been shown that ICL can diminish during training (Singh et al., 2023), we find that prior work does not account for structural ICL. Building on Chen et al. (2024) 's active forgetting method, we introduce pretraining and finetuning methods that can modulate the preference for structural ICL and IWL. Importantly, this allows us to induce a $\textit{dual process strategy}$ where in-context and in-weights solutions coexist within a single model.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8207
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview