Iterative VAE as a predictive brain model for out-of-distribution generalizationDownload PDF

Published: 03 Nov 2020, Last Modified: 20 Oct 2024SVRHM@NeurIPS PosterReaders: Everyone
Keywords: VAE, Iterative VAE, Predictive Coding, Out-of-distribution generalization, Generative models, Visual perception
TL;DR: Iterative variational autoencoders out-perform predictive coding in out-of-distribution generalization tasks.
Abstract: Our ability to generalize beyond training data to novel, out-of-distribution, image degradations is a hallmark of primate vision. The predictive brain, exemplified by predictive coding networks (PCNs), has become a prominent neuroscience theory of neural computation. Motivated by the recent successes of variational autoencoders (VAEs) in machine learning, we rigorously derive a correspondence between PCNs and VAEs. This motivates us to consider iterative extensions of VAEs (iVAEs) as plausible variational extensions of the PCNs. We further demonstrate that iVAEs generalize to distributional shifts significantly better than both PCNs and VAEs. In addition, we propose a novel measure of recognizability for individual samples which can be tested against human psychophysical data. Overall, we hope this work will spur interest in iVAEs as a promising new direction for modeling in neuroscience.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/iterative-vae-as-a-predictive-brain-model-for/code)
5 Replies

Loading