Keywords: Causal Discovery, Structure Learning, Causality, Identification
TL;DR: We introduce a framework to develop causal distances between graphs and algorithms to compute them in polynomial time, a first for CPDAGs.
Abstract: Evaluating graphs learned by causal discovery algorithms is difficult: The number of edges that differ between two graphs does not reflect how the graphs differ with respect to the identifying formulas they suggest for causal effects. We introduce a framework for developing causal distances between graphs which includes the structural intervention distance for directed acyclic graphs as a special case. We use this framework to develop improved adjustment-based distances as well as extensions to completed partially directed acyclic graphs and causal orders. We develop new reachability algorithms to compute the distances efficiently and to prove their low polynomial time complexity. In our package gadjid (open source at https://github.com/CausalDisco/gadjid), we provide implementations of our distances; they are orders of magnitude faster with proven lower time complexity than the structural intervention distance and thereby provide a success metric for causal discovery that scales to graph sizes that were previously prohibitive.
List Of Authors: Henckel, Leonard and Wurtzen, Theo and Weichwald, Sebastian
Latex Source Code: zip
Signed License Agreement: pdf
Code Url: https://github.com/CausalDisco/gadjid
Submission Number: 270
Loading