Dynamical modeling of nonlinear latent factors in multiscale neural activity with real-time inference

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multimodal Deep Learning, Missing Data, Dynamical Models, Neuroscience
Abstract: Real-time decoding of target variables from multiple simultaneously recorded neural time-series modalities, such as discrete spiking activity and continuous field potentials, is important across various neuroscience applications. However, a major challenge for doing so is that different neural modalities can have different timescales (i.e., sampling rates) and different probabilistic distributions, or can even be missing at some time-steps. Existing nonlinear models of multimodal neural activity do not address different timescales or missing samples across modalities. Further, some of these models do not allow for real-time decoding. Here, we develop a learning framework that can enable real-time recursive decoding while nonlinearly aggregating information across multiple modalities with different timescales and distributions and with missing samples. This framework consists of 1) a multiscale encoder that nonlinearly aggregates information after learning within-modality dynamics to handle different timescales and missing samples in real time, 2) a multiscale dynamical backbone that extracts multimodal temporal dynamics and enables real-time recursive decoding, and 3) modality-specific decoders to account for different probabilistic distributions across modalities. In both simulations and three distinct multiscale brain datasets, we show that our model can aggregate information across modalities with different timescales and distributions and missing samples to improve real-time target decoding. Further, our method outperforms various linear and nonlinear multimodal benchmarks in doing so.
Primary Area: Neuroscience and cognitive science (e.g., neural coding, brain-computer interfaces)
Submission Number: 13883
Loading