Keywords: Protein-protein Interactions, Geometric Deep Learning, Mutation Effect Prediction
Abstract: Protein-protein interaction (PPI) represents a central challenge within the biology field, and accurately predicting the consequences of mutations in this context is crucial for drug design and protein engineering. Deep learning (DL) has shown promise in forecasting the effects of such mutations but is hindered by two primary constraints. First, the structures of mutant proteins are often elusive to acquire. Secondly, PPI takes place dynamically, which is rarely integrated into the DL architecture design. To address these obstacles, we present a novel framework named Refine-PPI with two key enhancements. First, we introduce a structure refinement module trained by a mask mutation modeling (MMM) task on available wild-type structures, which is then transferred to hallucinate the inaccessible mutant structures. Second, we employ a new kind of geometric network, called the probability density cloud network (PDC-Net), to capture 3D dynamic variations and encode the atomic uncertainty associated with PPI. Comprehensive experiments on SKEMPI.v2 substantiate the superiority of Refine-PPI over all existing tools for predicting free energy change. These findings underscore the effectiveness of our hallucination strategy and the PDC module in addressing the absence of mutant protein structure and modeling geometric uncertainty.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4957
Loading