$\textrm{D}^3\textrm{Former}$: Debiased Dual Distilled Transformer for Incremental LearningDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Incremental Learning, Transformers
TL;DR: Adapting a hybrid ViT for class incremental learning
Abstract: In the class incremental learning (CIL) setting, groups of classes are introduced to a model in each learning phase. The goal is to learn a unified model performant on all the classes observed so far. Given the recent popularity of Vision Transformers (ViTs) in conventional classification settings, an interesting question is to study their continual learning behaviour. In this work, we develop a Debiased Dual Distilled Transformer for CIL dubbed $\textrm{D}^3\textrm{Former}$. The proposed model leverages a hybrid nested ViT design to ensure data efficiency and scalability to small as well as large datasets. In contrast to a recent ViT-based CIL approach, our $\textrm{D}^3\textrm{Former}$ does not dynamically expand its architecture when new tasks are learned and remains suitable for a large number of incremental tasks. The improved CIL behavior of $\textrm{D}^3\textrm{Former}$ owes to two fundamental changes to the ViT design. First, we treat incremental learning as a long-tail classification problem where the majority samples from new classes vastly outnumber the limited exemplars available for old classes. To avoid bias against the minority old classes, we propose to dynamically adjust logits to emphasize on retaining the representations relevant to old tasks. Second, we propose to preserve the configuration of spatial attention maps as the learning progresses across tasks. This helps in reducing catastrophic forgetting by constraining the model to retain attention on the most discriminative regions. $\textrm{D}^3\textrm{Former}$ obtains favorable results on incremental versions of CIFAR-100, MNIST, SVHN, and ImageNet datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
5 Replies

Loading