How Tight Can PAC-Bayes be in the Small Data Regime?Download PDF

Published: 09 Nov 2021, Last Modified: 22 Oct 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: PAC-Bayes, learning theory, generalization
TL;DR: We investigate how tight a standard proof of PAC-Bayes theorems can be made.
Abstract: In this paper, we investigate the question: _Given a small number of datapoints, for example $N = 30$, how tight can PAC-Bayes and test set bounds be made?_ For such small datasets, test set bounds adversely affect generalisation performance by withholding data from the training procedure. In this setting, PAC-Bayes bounds are especially attractive, due to their ability to use all the data to simultaneously learn a posterior and bound its generalisation risk. We focus on the case of i.i.d. data with a bounded loss and consider the generic PAC-Bayes theorem of Germain et al. While their theorem is known to recover many existing PAC-Bayes bounds, it is unclear what the tightest bound derivable from their framework is. For a fixed learning algorithm and dataset, we show that the tightest possible bound coincides with a bound considered by Catoni; and, in the more natural case of distributions over datasets, we establish a lower bound on the best bound achievable in expectation. Interestingly, this lower bound recovers the Chernoff test set bound if the posterior is equal to the prior. Moreover, to illustrate how tight these bounds can be, we study synthetic one-dimensional classification tasks in which it is feasible to meta-learn both the prior and the form of the bound to numerically optimise for the tightest bounds possible. We find that in this simple, controlled scenario, PAC-Bayes bounds are competitive with comparable, commonly used Chernoff test set bounds. However, the sharpest test set bounds still lead to better guarantees on the generalisation error than the PAC-Bayes bounds we consider.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: https://github.com/cambridge-mlg/pac-bayes-tightness-small-data
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/arxiv:2106.03542/code)
17 Replies

Loading