Inference from Real-World Sparse Measurements

22 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Attention-based models, irregularly sampled data, wind nowcasting, dynamical systems
TL;DR: We introduce an attention-based model for modeling physical systems with data irregularly sampled in space
Abstract: Real-world problems often involve complex and unstructured sets of measurements, which happens when sensors are sparsely placed in either space or time. Being able to model this irregular spatiotemporal data and extract meaningful forecasts is crucial. Deep learning architectures capable of processing sets of measurements with positions varying from set to set, and extracting readouts anywhere are methodologically difficult. Current state-of-the-art models are graph neural networks and require domain-specific knowledge for proper setup. We propose an attention-based model focused on robustness and practical applicability, with two key design contributions. First, we adopt a ViT-like transformer that takes both context points and read-out positions as inputs, eliminating the need for an encoder-decoder structure. Second, we use a unified method for encoding both context and read-out positions. This approach is intentionally straightforward and integrates well with other systems. Compared to existing approaches, our model is simpler, requires less specialized knowledge, and does not suffer from a problematic bottleneck effect, all of which contribute to superior performance. We conduct in-depth ablation studies that characterize this problematic bottleneck in the latent representations of alternative models that inhibit information utilization and impede training efficiency. We also perform experiments across various problem domains, including high-altitude wind nowcasting, two-day weather forecasting, fluid dynamics, and heat diffusion. Our attention-based model consistently outperforms state-of-the-art models in handling irregularly sampled data. Notably, our model reduces the root mean square error (RMSE) for wind nowcasting from 9.24 to 7.98 and for heat diffusion tasks from 0.126 to 0.084.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6131
Loading