PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling

ICLR 2025 Conference Submission9070 Authors

27 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models; Efficient Generative Inference
TL;DR: We developed PyramidKV, a novel and effective KV cache compression method.
Abstract: In this study, we investigate whether attention-based information flow inside large language models (LLMs) is aggregated through noticeable patterns for long context processing. Our observations reveal that LLMs aggregate information through Pyramidal Information Funneling where attention is scattering widely in lower layers, progressively consolidating within specific contexts, and ultimately focusing on critical tokens (a.k.a massive activation or attention sink) in higher layers. Motivated by these insights, we developed PyramidKV, a novel and effective KV cache compression method. This approach dynamically adjusts the KV cache size across different layers, allocating more cache in lower layers and less in higher ones, diverging from traditional methods that maintain a uniform KV cache size. Our experimental evaluations, utilizing the LongBench benchmark, show that PyramidKV matches the performance of models with a full KV cache while retaining only 12\% of the KV cache, thus significantly reducing memory usage. In scenarios emphasizing memory efficiency, where only 0.7\% of the KV cache is maintained, PyramidKV surpasses other KV cache compression techniques, achieving up to a 20.5 absolute accuracy improvement on TREC dataset. In the Needle-in-a-Haystack experiment, PyramidKV outperforms competing methods in maintaining long-context comprehension in LLMs; notably, retaining just 128 KV cache entries enables the LLAMA-3-70B model to achieve 100\% Acc. performance, matching that of a full KV cache.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9070
Loading