Keywords: Length Generalization, Position Embedding
TL;DR: We formalize length generalization as a low-dimension-to-high-dimension generalization challenge.
Abstract: Low-Dimension-to-High-Dimension (LDHD) generalization is a special case of Out-of-Distribution (OOD) generalization, where the training data are restricted to a low-dimensional subspace of the high-dimensional testing space. Assuming that each instance is generated from a latent variable and the dimension of the latent variable reflects the problem scale, the inherent scaling challenge in length generalization can be captured by the LDHD generalization in the latent space. We theoretically demonstrate that LDHD generalization is generally unattainable without exploiting prior knowledge to provide appropriate inductive bias. Specifically, we explore LDHD generalization in Boolean functions. We verify that different architectures trained with (S)GD converge to \emph{min-degree interpolators w.r.t. different linearly independent sets}. LDHD generalization is achievable if and only if the target function coincides with this inductive bias. Applying the insights from LDHD generalization to length generalization, we explain the effectiveness of CoT as changing the structure latent space to enable better LDHD generalization. We also propose a principle for position embedding design to handle both the inherent LDHD generalization and the nuisances such as the data format. Following the principle, we propose a novel position embedding called RPE-Square that remedies the RPE for dealing with the data format nuisance.
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1423
Loading