Set-based Neural Network Encoding

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Neural Network Encoding, Sets
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a set-based neural network encoder for predicting the performance of trained neural networks given access only to model parameters.
Abstract: We propose an approach to neural network weight encoding for generalization performance prediction that utilizes set-to-set and set-to-vector functions to efficiently encode neural network parameters. Our approach is capable of encoding neural networks in a modelzoo of mixed architecture and different parameter sizes as opposed to previous approaches that require custom encoding models for different architectures. Furthermore, our \textbf{S}et-based \textbf{N}eural network \textbf{E}ncoder (SNE) takes into consideration the hierarchical computational structure of neural networks by utilizing a layer-wise encoding scheme that culminates to encoding all layer-wise encodings to obtain the neural network encoding vector. Additionally, we introduce a \textit{pad-chunk-encode} pipeline to efficiently encode neural network layers that is adjustable to computational and memory constraints. We also introduce two new tasks for neural network generalization performance prediction: cross-dataset and cross-architecture. In cross-dataset performance prediction, we evaluate how well performance predictors generalize across modelzoos trained on different datasets but of the same architecture. In cross-architecture performance prediction, we evaluate how well generalization performance predictors transfer to modelzoos of different architecture. Experimentally, we show that SNE outperforms the relevant baselines on the cross-dataset task and provide the first set of results on the cross-architecture task.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4500
Loading