MergeMoE: Efficient Compression of MoE Models via Expert Output Merging

ICLR 2026 Conference Submission16831 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Mixture-of-Experts, Model Compression
Abstract: The Mixture-of-Experts (MoE) technique has proven to be a promising solution to efficiently scale the model size, which has been widely applied in recent LLM advancements. However, the substantial memory overhead of MoE models has made their compression an important research direction. In this work, we provide a theoretical analysis of expert merging, a recently proposed technique for compressing MoE models. Rather than interpreting expert merging from the conventional perspective of parameter aggregation, we approach it from the perspective of merging experts' outputs. Our key insight is that the merging process can be interpreted as inserting additional matrices into the forward computation, which naturally leads to an optimization formulation. Building on this analysis, we introduce MergeMoE, a method that leverages mathematical optimization to construct the compression matrices. We evaluate MergeMoE on multiple MoE models and show that our algorithm consistently outperforms the baselines with the same compression ratios.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 16831
Loading