Keywords: offline imitation learning, safe imitation learning, undesirable demonstration, preference-based learning
TL;DR: We develop a novel imitation learning algorithm that can learn from undesired demonstrations
Abstract: We address the problem of offline learning a policy that avoids undesirable demonstrations. Unlike conventional offline imitation learning approaches that aim to imitate expert or near-optimal demonstrations, our setting involves avoiding undesirable behavior (specified using undesirable demonstrations). To tackle this problem, unlike standard imitation learning where the aim is to minimize the distance between learning policy and expert demonstrations, we formulate the learning task as maximizing a statistical distance, in the space of state-action stationary distributions, between the learning policy and the undesirable policy. This significantly different approach results in a novel training objective that necessitates a new algorithm to address it. Our algorithm, UNIQ, tackles these challenges by building on the inverse Q-learning framework, framing the learning problem as a cooperative (non-adversarial) task. We then demonstrate how to efficiently leverage unlabeled data for practical training. Our method is evaluated on standard benchmark environments, where it consistently outperforms state-of-the-art baselines.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11428
Loading