Keywords: diffusion models, virtual try-on, parameter-efficient training
TL;DR: A high-quality virtual try-on diffusion model with parameter efficiency and simplified inference.
Abstract: Virtual try-on methods based on diffusion models achieve realistic effects but often require additional encoding modules, a large number of training parameters, and complex preprocessing, which increases the burden on training and inference. In this work, we re-evaluate the necessity of additional modules and analyze how to improve training efficiency and reduce redundant steps in the inference process. Based on these insights, we propose CatVTON, a simple and efficient virtual try-on diffusion model that transfers in-shop or worn garments of arbitrary categories to target individuals by concatenating them along spatial dimensions as inputs. The efficiency of CatVTON is reflected in three aspects: (1) Lightweight network. CatVTON consists only of a VAE and a simplified denoising UNet, removing redundant image and text encoders as well as cross-attentions, and includes just 899.06M parameters. (2) Parameter-efficient training. Through experimental analysis, we identify self-attention modules as crucial for adapting pre-trained diffusion models to the virtual try-on task, enabling high-quality results with only 49.57M training parameters. (3) Simplified inference. CatVTON eliminates unnecessary preprocessing, such as pose estimation, human parsing, and captioning, requiring only person image and garment reference to guide the virtual try-on process, reducing over 49% memory usage compared to other diffusion-based methods. Extensive experiments demonstrate that CatVTON achieves superior qualitative and quantitative results compared to baseline methods and demonstrates strong generalization performance in real-world scenarios, despite being trained solely on a public dataset of 73K samples.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 833
Loading