Subspace Node Pruning

23 Sept 2024 (modified: 25 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Node Pruning, Subspaces, Efficient AI
TL;DR: We describe the projection of neural activities to a subspace in which they are orthogonal but from which they can still be (node) pruned. This subspace enables: pruning only non-redundant information, sensible ranking of nodes, network-wide pruning.
Abstract: Efficiency of neural network inference is undeniably important in a time where commercial use of AI models increases daily. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers to significantly reduce inference time while retaining network performance. In this work, we propose the projection of unit activations to an orthogonal subspace in which there is no redundant activity and within which we may prune nodes while simultaneously recovering the impact of lost units via linear least squares. We identify that, for effective node pruning, this subspace must be constructed using a triangular transformation matrix, a transformation which is equivalent to and unnormalized Gram-Schmidt orthogonalization. We furthermore show that the order in which units are orthogonalized can be optimised to maximally reduce node activations in our subspace and thereby form a more optimal ranking of nodes. Finally, we leverage these orthogonal subspaces to automatically determine layer-wise pruning ratios based upon the relative scale of node activations in our subspace, equivalent to cumulative variance. Our proposed method reaches state of the art when pruning ImageNet trained VGG-16 and rivals more complex state of the art methods when pruning ResNet-50 networks across a range of pruning ratios.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2922
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview