Random Controlled Differential Equations

ICLR 2026 Conference Submission25045 Authors

20 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: random features, time-series, path signatures, CDEs, RDEs, reservoir computing, kernels
Abstract: We introduce a training-efficient framework for time-series learning that combines random features with controlled differential equations (CDEs). In this approach, large randomly parameterized CDEs act as continuous-time reservoirs, mapping input paths to rich representations. Only a linear readout layer is trained, resulting in fast, scalable models with strong inductive bias. Building on this foundation, we propose two variants: (i) Random Fourier CDEs (RF-CDEs): these lift the input signal using random Fourier features prior to the dynamics, providing a kernel-free approximation of RBF-enhanced sequence models; (ii) Random Rough DEs (R-RDEs): these operate directly on rough-path inputs via a log-ODE discretisation, using log-signatures to capture higher-order temporal interactions while remaining stable and efficient. We prove that in the infinite-width limit, these model induces the RBF-lifted signature kernel and the rough signature kernel, respectively, offering a unified perspective on random-feature reservoirs, continuous-time deep architectures, and path-signature theory. We evaluate both models across a range of time-series benchmarks, demonstrating competitive or state-of-the-art performance. These methods provide a practical alternative to explicit signature computations, retaining their inductive bias while benefiting from the efficiency of random features. Code is publicly available at: \url{https://anonymous.4open.science/r/RandomSigJax-C768/}
Primary Area: learning on time series and dynamical systems
Submission Number: 25045
Loading