Keywords: large language models, autonomous driving, safety, decision making, planning and control, MPC
TL;DR: Explore LLM as decision maker for safe autonomous driving
Abstract: Autonomous Driving (AD) encounters significant safety hurdles in long-tail unforeseen driving scenarios, largely stemming from the non-interpretability and poor generalization of the deep neural networks within the AD system, particularly in out-of-distribution and uncertain data. To this end, this paper explores the integration of Large Language Models (LLMs) into AD systems, leveraging their robust common-sense knowledge and reasoning abilities. The proposed methodologies employ LLMs as intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning, for enhancing driving performance and safety. We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine. Demonstrating superior performance and safety metrics compared to state-of-the-art approaches, our approach shows the promising potential for using LLMs for autonomous vehicles.
Submission Number: 1
Loading