Unifying Cross-Lingual Transfer across Scenarios of Resource Scarcity

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 MainEveryoneRevisionsBibTeX
Submission Type: Regular Long Paper
Submission Track: Multilinguality and Linguistic Diversity
Keywords: cross-lingual transfer, low-resource scenarios, parameter-efficient fine-tuning
TL;DR: We investigate how to integrate cross-lingual transfer techniques to address a range of scenarios of resource scarcity.
Abstract: The scarcity of data in many of the world's languages necessitates the transfer of knowledge from other, resource-rich languages. However, the level of scarcity varies significantly across multiple dimensions, including: i) the amount of task-specific data available in the source and target languages; ii) the amount of monolingual and parallel data available for both languages; and iii) the extent to which they are supported by pretrained multilingual and translation models. Prior work has largely treated these dimensions and the various techniques for dealing with them separately; in this paper, we offer a more integrated view by exploring how to deploy the arsenal of cross-lingual transfer tools across a range of scenarios, especially the most challenging, low-resource ones. To this end, we run experiments on the AmericasNLI and NusaX benchmarks over 20 languages, simulating a range of few-shot settings. The best configuration in our experiments employed parameter-efficient language and task adaptation of massively multilingual Transformers, trained simultaneously on source language data and both machine-translated and natural data for multiple target languages. In addition, we show that pre-trained translation models can be easily adapted to unseen languages, thus extending the range of our hybrid technique and translation-based transfer more broadly. Beyond new insights into the mechanisms of cross-lingual transfer, we hope our work will provide practitioners with a toolbox to integrate multiple techniques for different real-world scenarios. Our code is available at https://github.com/parovicm/unified-xlt.
Submission Number: 3648
Loading