Semantic Loss Guided Data Efficient Supervised Fine Tuning for Safe Responses in LLMs

ICLR 2025 Conference Submission13451 Authors

28 Sept 2024 (modified: 26 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, Safe Large Language Model, Earth Mover Distance, Supervised Fine-tuning
Abstract: Large Language Models (LLMs) generating unsafe responses to toxic prompts is a significant issue in their applications. While various efforts aim to address this safety concern, previous approaches often demand substantial human data collection or rely on the less dependable option of using another LLM to generate corrective data. In this paper, we aim to take this problem and overcome limitations of requiring significant high-quality human data. Our method requires only a small set of unsafe responses to toxic prompts, easily obtained from the unsafe LLM itself. By employing a semantic cost combined with a negative Earth Mover Distance (EMD) loss, we guide the LLM away from generating unsafe responses. Additionally, we propose a novel lower bound for EMD loss, enabling more efficient optimization. Our results demonstrate superior performance and data efficiency compared to baselines, and we further examine the nuanced effects of over-alignment and potential degradation of language capabilities when using contrastive data.
Supplementary Material: pdf
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13451
Loading