Prompt-guided Precise Audio Editing with Diffusion Models

Published: 02 May 2024, Last Modified: 25 Jun 2024ICML 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Audio editing involves the arbitrary manipulation of audio content through precise control. Although text-guided diffusion models have made significant advancements in text-to-audio generation, they still face challenges in finding a flexible and precise way to modify target events within an audio track. We present a novel approach, referred to as **PPAE**, which serves as a general module for diffusion models and enables precise audio editing. The editing is based on the input textual prompt only and is entirely training-free. We exploit the cross-attention maps of diffusion models to facilitate accurate local editing and employ a hierarchical local-global pipeline to ensure a smoother editing process. Experimental results highlight the effectiveness of our method in various editing tasks.
Submission Number: 1168
Loading