Keywords: differential privacy, mean estimation, anisotropic, covariance-adaptive error
TL;DR: We present private mean estimators for anisotropic distributions with dimension-free sample complexity, which we prove is optimal. We also give an estimator under unknown covariance, with a dimension-dependence that is milder than in prior work.
Abstract: We present differentially private algorithms for high-dimensional mean estimation. Previous private estimators on distributions over $\mathbb{R}^d$ suffer from a curse of dimensionality, as they require $\Omega(d^{1/2})$ samples to achieve non-trivial error, even in cases where $O(1)$ samples suffice without privacy. This rate is unavoidable when the distribution is isotropic, namely, when the covariance is a multiple of the identity matrix. Yet, real-world data is often highly anisotropic, with signals concentrated on a small number of principal components. We develop estimators that are appropriate for such signals---our estimators are $(\varepsilon,\delta)$-differentially private and have sample complexity that is dimension-independent for anisotropic subgaussian distributions. Given $n$ samples from a distribution with known covariance-proxy $\Sigma$ and unknown mean $\mu$, we present an estimator $\hat{\mu}$ that achieves error, $\|\hat{\mu}-\mu\|_2\leq \alpha$, as long as $n\gtrsim \text{tr}(\Sigma)/\alpha^2+ \text{tr}(\Sigma^{1/2})/(\alpha\varepsilon)$. We show that this is the optimal sample complexity for this task up to logarithmic factors. Moreover, for the case of unknown covariance, we present an algorithm whose sample complexity has improved dependence on the dimension, from $d^{1/2}$ to $d^{1/4}$.
Primary Area: Privacy
Submission Number: 13437
Loading