Keywords: diffusion models, concept editing, pruning
TL;DR: Training free Concept editing via neuron pruning
Abstract: While large-scale text-to-image diffusion models have demonstrated impressive image-generation capabilities, there are significant concerns about their potential misuse for generating unsafe content, violating copyright, and perpetuating societal biases. Recently, the text-to-image generation community has begun addressing these concerns by editing or unlearning undesired concepts from pre-trained models. However, these methods often involve data-intensive and inefficient fine-tuning or utilize various forms of token remapping, rendering them susceptible to adversarial jailbreaks. In this paper, we present a simple and effective training-free approach, ConceptPrune, wherein we first identify critical regions within pre-trained models responsible for generating undesirable concepts, thereby facilitating straightforward concept unlearning via weight pruning. Experiments across a range of concepts including artistic styles, nudity, and object erasure demonstrate that target concepts can be efficiently erased by pruning a tiny fraction, approximately 0.12% of total weights, enabling multi-concept erasure and robustness against various white-box and black-box adversarial attacks.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11989
Loading