Keywords: query-rewriting, genetic algorithm, llm-agents
Abstract: Deploying capable and user-aligned LLM-based systems necessitates reliable evaluation. While LLMs excel in verifiable tasks like coding and mathematics, where gold-standard solutions are available, adoption remains challenging for subjective tasks that lack a single correct answer. E-commerce Query Rewriting (QR) is one such problem where determining whether a rewritten query properly captures the user intent is extremely difficult to figure out algorithmically. In this work, we introduce OptAgent, a novel framework that combines multi-agent simulations with genetic algorithms to verify and optimize queries for QR. Instead of relying on a static reward model or a single LLM judge, our approach uses multiple LLM-based agents, each acting as a simulated shopping customer, as a dynamic reward signal. The average of these agent-derived scores serves as an effective fitness function for an evolutionary algorithm that iteratively refines the user's initial query. We evaluate OptAgent on a dataset of 1000 real-world e-commerce queries in five different categories, and we observe an average improvement of $21.98$% over the original user query and $3.36$% over a Best-of-N LLM rewriting baseline.
Primary Area: optimization
Submission Number: 20566
Loading