GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models

TMLR Paper4679 Authors

15 Apr 2025 (modified: 27 May 2025)Under review for TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: In this work, we propose GLOV, which enables Large Language Models (LLMs) to act as implicit optimizers for Vision-Language Models (VLMs) to enhance downstream vision tasks. GLOV prompts an LLM with the downstream task description, querying it for suitable VLM prompts (\eg for zero-shot classification with CLIP). These prompts are ranked according to their fitness for the downstream vision task. In each respective optimization step, the ranked prompts are fed as in-context examples (with their accuracies) to equip the LLM with the knowledge of the type of prompts preferred by the downstream VLM. Furthermore, we explicitly guide the LLM's generation at each optimization step by adding an offset vector -- calculated from the embedding differences between previous \textit{positive} and \textit{negative} solutions -- to the intermediate layer of the network for the next generation. This offset vector biases the LLM generation toward the type of language the downstream VLM prefers, resulting in enhanced performance on the downstream vision tasks. We comprehensively evaluate our GLOV on two tasks: object recognition and the critical task of enhancing VLM safety. Our GLOV shows performance improvement by up to $15.0\%$ and $57.5\%$ for dual-encoder (\eg~CLIP) and encoder-decoder (\eg~\llava) models for object recognition and reduces the attack success rate (ASR) on state-of-the-art VLMs by up to $60.7\%$.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Masashi_Sugiyama1
Submission Number: 4679
Loading