ThinkRec: Thinking-based recommendation via LLM

ACL ARR 2025 May Submission24 Authors

06 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Recent advances in large language models (LLMs) have enabled more semantic-aware recommendations through natural language generation. Current LLM for recommendation (LLM4Rec) methods mostly operate in a System 1-like manner, relying on superficial features to match similar items based on click history, rather than reasoning through deeper behavioral logic. This often leads to superficial and erroneous recommendations. Motivated by this, we propose ThinkRec, a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system). Technically, ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces, guiding the model to form interpretable reasoning chains that consist of analyzing interaction histories, identifying user preferences, and making decisions based on target items. On top of this, we propose an instance-wise expert fusion mechanism to reduce the reasoning difficulty. By dynamically assigning weights to expert models based on users’ latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization. Extensive experiments on real-world datasets demonstrate that ThinkRec significantly improves the accuracy and interpretability of recommendations. Our implementations are available in anonymous Github: https://anonymous.4open.science/r/ThinkRec_LLM.
Paper Type: Long
Research Area: Information Retrieval and Text Mining
Research Area Keywords: dense retrieval, document representation
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Publicly available software and/or pre-trained models
Languages Studied: English
Keywords: Recommendation, LLM, Thinking
Submission Number: 24
Loading