On Path Integration of Grid Cells: Group Representation and Isotropic ScalingDownload PDF

May 21, 2021 (edited Nov 03, 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: grid cell, representation learning, path integration, place cell, recurrent network, matrix Lie group
  • TL;DR: We conduct theoretical analysis of the recurrent model for path integration by grid cells. We learn clear hexagon grid patterns empirically from a linear prototype model via an optimization-based approach.
  • Abstract: Understanding how grid cells perform path integration calculations remains a fundamental problem. In this paper, we conduct theoretical analysis of a general representation model of path integration by grid cells, where the 2D self-position is encoded as a higher dimensional vector, and the 2D self-motion is represented by a general transformation of the vector. We identify two conditions on the transformation. One is a group representation condition that is necessary for path integration. The other is an isotropic scaling condition that ensures locally conformal embedding, so that the error in the vector representation translates conformally to the error in the 2D self-position. Then we investigate the simplest transformation, i.e., the linear transformation, uncover its explicit algebraic and geometric structure as matrix Lie group of rotation, and explore the connection between the isotropic scaling condition and a special class of hexagon grid patterns. Finally, with our optimization-based approach, we manage to learn hexagon grid patterns that share similar properties of the grid cells in the rodent brain. The learned model is capable of accurate long distance path integration. Code is available at https://github.com/ruiqigao/grid-cell-path.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/ruiqigao/grid-cell-path
10 Replies